
Introduction

(b)

•A dynamic tree can be used to maintain a vertex
disjoint forest and efficiently () answer
quires about paths and subtrees

•They also allow one to efficiently update the forest
by inserting or removing an edge

•In the parallel batch-dynamic setting, the goal is to
concurrently handle batches of updates

•Rake-Compress (RC) Trees are an implementation
of Parallel Batch-Dynamic Trees.

•Randomized RC Trees can handle updates in
 span w.h.p and

expected work.

•Deterministic RC Trees can handle updates in
 span and

worst-case work.

•Our goal is to optimize the deterministic algorithm
to reduce the gap in span between the algorithms

O(log n)

k

O(log n) O(k log(1 + n/k))

O(log n log log n) O(k log(1 + n/k))

Attempt 1: A Better MIS Attempt 2.1: Optimizing the Static Algorithm

Attempt 2.2: Generalizing the Static AlgorithmAttempt 3: Rooting the TreeNext Steps
•It is currently unclear whether batch-updates for

RC Trees can be achieved deterministically in
 span while remaining work efficient

•Since an MIS on vertices can be achieved in
 span, it seems plausible that one might

be able to achieve an update algorithm with
 span

•An alternative route may be to find an algorithm
which doesn’t require finding an MIS at all,
although this seems difficult because currently, all
algorithms for RC Trees require finding an IS

•In either case, the ability to induce direction on
the forest provides a promising avenue for future
exploration as each vertex now has a unique
parent which can be used for symmetry breaking

O(log n)

k
O(log⋆ k)

O(log n log⋆ k)

MIS Subroutine Work Span

Subroutine 1

Subroutine 2

O(n) O(log log n)
O(n log⋆ n) O(log⋆ n)

•The static algorithm for constructing an RC Tree can be optimized by splitting it into
two phases, which each use a different subroutine for to find a MIS to contract

•The subroutine used in the first phase is work efficient but span inefficient

•The subroutine used in the second phase is span efficient but work inefficient

•Deterministic RC Trees Work by iteratively contracting
an independent set of vertices of degree 1 & 2

•This requires finding and sufficiently large independent
set of vertices to contract at each iteration

•The current algorithm finds maximal independent set
(MIS) , which is guaranteed to be large enough

•There is a constant span reduction from finding an MIS
on a chain to 3-coloring a cycle, which has a lower
bound of rounds, meaning the current
algorithm cannot achieve span per iteration

log⋆ n
o(log⋆ k) • We use the work-efficient sub-routine for iterations and the span efficient

subroutine for iterations

• The result is that the overall algorithm is both work and span efficient

2 log log n
log(n/log2 n)

Total Work:

Total Span:

(
2 log log n

∑
k=0

(5
6)

i

O(n)) + log (n
log2 n) O (n log⋆ n

log2 n) = O(n)

2 log log n O(log log n) + log (n
log2 n) O(log⋆ n) = O(log n log⋆ n)

•The batch-update algorithm cannot be optimized in the same way

•We again consider two different subroutines for finding a MIS

(b)
MIS Subroutine Work Span

Subroutine 1

Subroutine 2

O(k) O(log log k)

O(k max(c, log(c) k)) O(log(c) n)

k ≈ n ⟹
log n log⋆ k

log log k
< log(1 + n/k)

•Subroutine 1 is work efficient, but span inefficient

•Subroutine 2 can be made span efficient, but work inefficient, by choosing

•Any choice of will cause subroutine 2 to be work inefficient, as the choice for which
minimizes is asymptotic asymptotical equivalent to

•For certain values of (e.g.), any way the algorithm gets split into two phases
with these subroutines will cause the algorithm to be either work or span inefficient

c = log⋆ n
c c

max(c, log(c) n) log⋆ n

k k = n

MIS on Chain:

3-Col on Chain:

3-Col on Cycle:

1

3

4

2

•A rooted tree may provide a way to perform
symmetry breaking and allow for a more efficient MIS

•By maintaining an Euler Tour Tree on the forest
maintained by the RC Tree we can arbitrarily induce
root in the forest

•An Euler Tour Tree can be deterministically updated in
 work and span

•Each vertex in the forest can keep track of its position
in the tour, and can efficiently determine it parent by
finding its neighbor which appears earliest in the tour.

O(k log(1 + n/k)) O(log n)

• Using subroutine 2 for rounds causes the algorithm to be work inefficient, but
using subroutine 1 for rounds causes it to be span inefficient

ω(1)
Ω(log(1 + n/k))

Optimizing Deterministic Work-Efficient Parallel Batch Dynamic Tree Contraction

 William Gay & Daniel Anderson (Carnegie Mellon University)

Contact:

wgay@andrew.cmu.edu Inducing direction on a tree via an Euler Tour

