Carnegie
MellonSpatially Adaptive Fluids Using Dynamic Radius in SPH Methods
Trey DuBose (tdubose@andrew.cmu.edu)UniversityMentor: Minchen Li

Why Adaptive Radius?

Modern fluid simulations use fixed radius sizes

Choosing a size requires a balance between the level of precision and computational load of a simulation.

Larger radius:

- Fewer particles
- Less computations
- Less detail
- Smaller radius:
- More particles
- More computations
- Higher detail

Adaptive Improvement

Why not do both?

Using large radius particles and smaller radius particles where necessary will improve the computational and spatial efficiency of fluid simulations.

Adaptive radius sizes:

- Use necessary number of particles
- Reduce unnecessary computations
- High detail where necessary

Adaptive Radius

Simulation Method

Position Based Dynamics Method Prioritizes enforcing the incompressibility, vorticity, and viscosity of the fluid.

Time Step Advancement:

- Predict the next positions and velocities from previous values
- 2. Solve energy equations for incompressibility, vorticity, and viscosity
- 3. Update velocities and positions
- 4. Update radius sizes and redistribute masses

Future Work

Update radius sizes and number of particles at runtime

These will adapt depending on the density and forces around a particle. This will effectively minimize the number of particles and maximize the detail over the course of a simulation without having to resample the fluid domain at every step.

