\funegie Pragmatic Neural Code Generation
University Raunak Sood, Saujas Vaduguru, Daniel Fried

PrObIem COdET Incoder-6B Pass@k Accuracy vs k on HumanEval bsol f k
. 3 Absolute Improvement of Pass@k Accuracy
® LLMs have shown remarkable success in text ® CodeT scores generated programs based on the number of programs 0.300 -
generation tasks that pass the same test cases it does 0275 1 0.07 1
e They can also be used to generate programs from 0.250 1 0,06
natural language descriptions " sy i g 0.225 - -
® Suchapplications have shown productivity gains ST e to 0
among software developers gy } l"'“'”““’"m"":",):""’ £ 0175 | g
—————————— (Pre-trained Language Model) (SR ()-..: $ 0.03
Xy T}.u_”:,f,“,,‘ ‘ t " (assert num_square(l) == 6 i 0.150 - o
Code Solution 1 Dual Test Case 1 —— CodeT (n = 25) !
Cha"enges | Code Solution 2 Execution | Test Case 2 0.125 - = CodeT (n - 20) 0.02
]]] Code Agreement - Test Cqse 5 —— CodeT (n = 15)
e Selecting a single program from a set of possible Generation | == o Generation | oy — CodeT(n=10) | 0.01-
. . 7 oo TR . 4 oot~ —— No CodeT
model generated solutions is difficult The Best Code Solution : ; : : — o00-
------- e [aasert mum square(1) == 1 k
— 300M return a%*2 AR A A AR ANS
0 B RS (SEBRTE o squabRf2) w4]
— s iitrieneend (aSsert num_square(0) e © | Figure 4: Our initial results comparing programs generated with and without
0.3
CodeT using Incoder-6B. We evaluate the pass@k accuracy over several values of
302 [} . [} M : :
Figure 2: CodeT algorithm. An LLM is used to generate both programs and k and determine the absolute improvement over the baseline.
! test cases, and the programs are re-ranked based on execution agreement
® \We observe a 6% increase in the accuracy of the first attempt using CodeT

. 0.
10° 10¢ 10? 10° 104 10° 10° qO" 10! 107 107 107 10° 10°

(a) 10 atte;la;::;::;roblem (b) Unlimited :::z::::e;er problem Pragmatic Inference ® AS we increase the number Of Samples COdeT iS allowed to Use, We S€€ a
e Programs are selected by the Rational Speech Acts (RSA) procedure, which general improvement in the pass accuracy
Figure 1: Plot of 10@k and pass@k score against k views pragmatic inference as a game between the Listener and Speaker e From previous research, the pragmatic inference procedure has a similar trend
using the AlphaCode family of models. models where they try to predict each other’s intentions in improvement
e |t often takes several attempts for a model to S, (test | program) oc L (program | test) P(test) m
generate the correct solution L (program | test) oc S (test | program) P(program)
Solution Pipeline To Do
e First, we sample programs and test cases via e Implement the RSA procedure and finish the pipeline

DESC, 1/0 -> PROG

e Evaluate the pipeline on different benchmarks, comparing it to existing

Listener and Speaker models (LLMs)

® Then, we use Bayesian inference to select the Listener methods
most informative programs based on the) ® Try other execution based methods such as MBR-Exec instead of CodeT
evaluation of the programs on the tests o] 7 PROGRAM

e Finally, we use the CodeT algorithm to select a T 11 ; 13 1" Ideas for Future Work
single program based on clustering programs DESC ->1/0 r Tl " - e |f we see improvements in pass accuracy, we might be able to generate an
with similar functionality Speaker T2 el &l zzt"g; CodeT informative data set

® This approach is promising because the two ’ B Acts ® \We can then use this data set to fine-tune the Speaker and Listener models
stacked approaches use different heuristics to O | 1 ‘ i 1 and observe if they learn to generate more accurate programs
filter programs nl_| -

D = {(PROG, 1/0)....} (P., T) Contact

\

rrsood@andrew.cmu.edu

Figure 3: Pipeline for stacking our pragmatic inference procedure with CodeT.

