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Figure 2: CodeT algorithm. An LLM is used to generate both programs and k and determine the absolute improvement over the baseline.
! test cases, and the programs are re-ranked based on execution agreement
® \We observe a 6% increase in the accuracy of the first attempt using CodeT

. 0. . . . .
10° 10¢ 10? 10° 104 10° 10° qO" 10! 107 107 107 10° 10°

(a) 10 atte;la;::;::;roblem (b) Unlimited :::z::::e;er problem Pragmatic Inference ® AS we increase the number Of Samples COdeT iS allowed to Use, We S€€ a
e Programs are selected by the Rational Speech Acts (RSA) procedure, which general improvement in the pass accuracy
Figure 1: Plot of 10@k and pass@k score against k views pragmatic inference as a game between the Listener and Speaker e From previous research, the pragmatic inference procedure has a similar trend
using the AlphaCode family of models. models where they try to predict each other’s intentions in improvement
e |t often takes several attempts for a model to S, (test | program) oc L (program | test) P(test) m
generate the correct solution L (program | test) oc S (test | program) P(program)
Solution Pipeline To Do
e First, we sample programs and test cases via e Implement the RSA procedure and finish the pipeline
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e Evaluate the pipeline on different benchmarks, comparing it to existing

Listener and Speaker models (LLMs)
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Figure 3: Pipeline for stacking our pragmatic inference procedure with CodeT.




