
Pragmatic Neural Code Generation
Raunak Sood, Saujas Vaduguru, Daniel Fried

Introduction

(a) (b)

Contact 
rrsood@andrew.cmu.edu

Preliminary ResultsMethodology

Future Work

Problem
● LLMs have shown remarkable success in text 

generation tasks
● They can also be used to generate programs from 

natural language descriptions
● Such applications have shown productivity gains 

among software developers

Challenges
● Selecting a single program from a set of possible 

model generated solutions is difficult

Figure 1: Plot of 10@k and pass@k score against k 
using the AlphaCode family of models.

● It often takes several attempts for a model to 
generate the correct solution

Solution
● First, we sample programs and test cases via 

Listener and Speaker models (LLMs)
● Then, we use Bayesian inference to select the 

most informative programs based on the 
evaluation of the programs on the tests

● Finally, we use the CodeT algorithm to select a 
single program based on clustering programs 
with similar functionality

● This approach is promising because the two 
stacked approaches use different heuristics to 
filter programs

CodeT
● CodeT scores generated programs based on the number of programs 

that pass the same test cases it does

Figure 2: CodeT algorithm. An LLM is used to generate both programs and 
test cases, and the programs are re-ranked based on execution agreement

Pragmatic Inference
● Programs are selected by the Rational Speech Acts (RSA) procedure, which 

views pragmatic inference as a game between the Listener and Speaker 
models where they try to predict each other’s intentions 

S
1
(test | program) ∝ L

0
(program | test) P(test)

L
1
(program | test) ∝ S

1
(test | program) P(program)

Pipeline

Figure 3: Pipeline for stacking our pragmatic inference procedure with CodeT. 

Figure 4: Our initial results comparing programs generated with and without 
CodeT using Incoder-6B. We evaluate the pass@k accuracy over several values of 
k and determine the absolute improvement over the baseline. 

● We observe a 6% increase in the accuracy of the first attempt using CodeT
● As we increase the number of samples CodeT is allowed to use, we see a 

general improvement in the pass accuracy
● From previous research, the pragmatic inference procedure has a similar trend 

in improvement 

To Do
● Implement the RSA procedure and finish the pipeline
● Evaluate the pipeline on different benchmarks, comparing it to existing 

methods
● Try other execution based methods such as MBR-Exec instead of CodeT

Ideas for Future Work
● If we see improvements in pass accuracy, we might be able to generate an 

informative data set
● We can then use this data set to fine-tune the Speaker and Listener models 

and observe if they learn to generate more accurate programs


