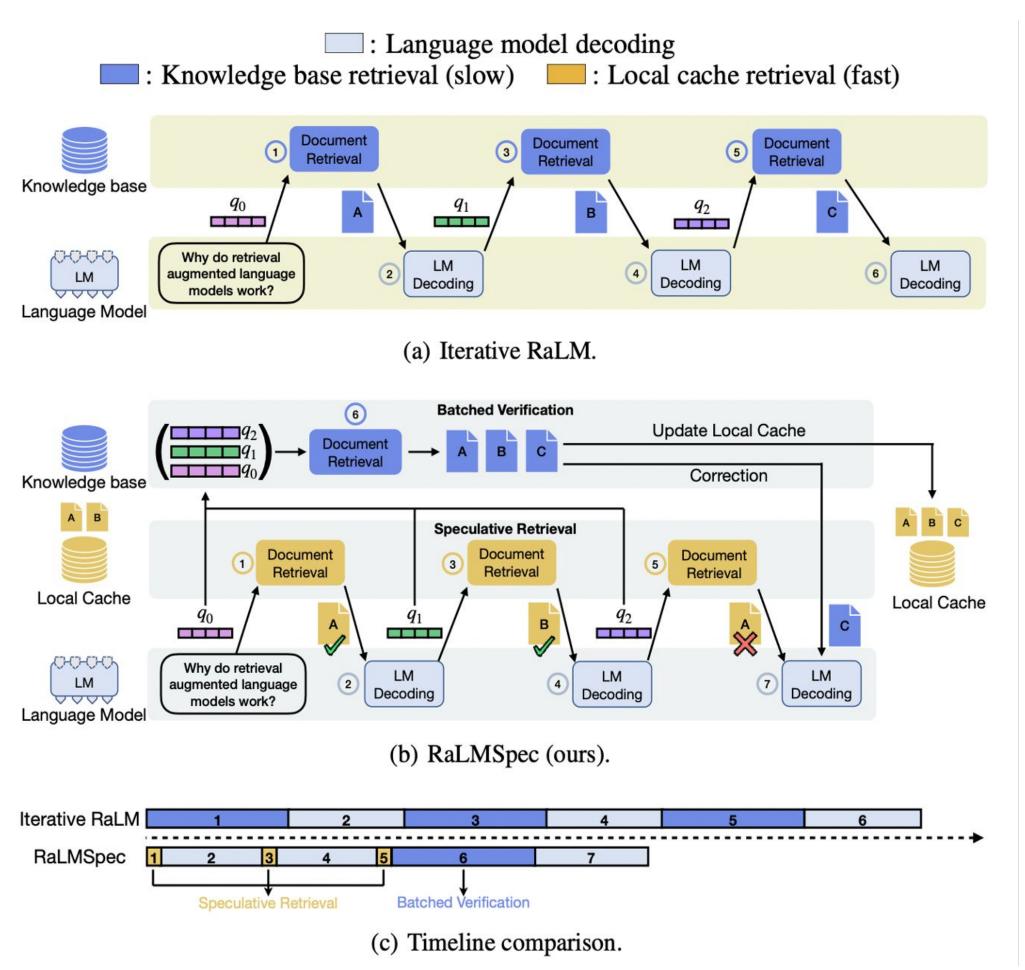
#### Introduction

- Retrieval-augmented language models (RaLM) have demonstrated the potential to solve NLP tasks by incorporating a non-parametric knowledge base.
- Existing RaLM methods can be categorized into two classes based on interaction with the knowledge base: (1) **One-shot**: retrieve **once** for each request (2) **Iterative**: **periodically** query the knowledge base
- Although iterative RaLM achieves better generative quality, frequent retrievals produces high retrieval
- overhead. This project RaLMSpec answers the following research question: can we reduce the overhead of iterative RaLM without affecting generative quality?

## Methodology

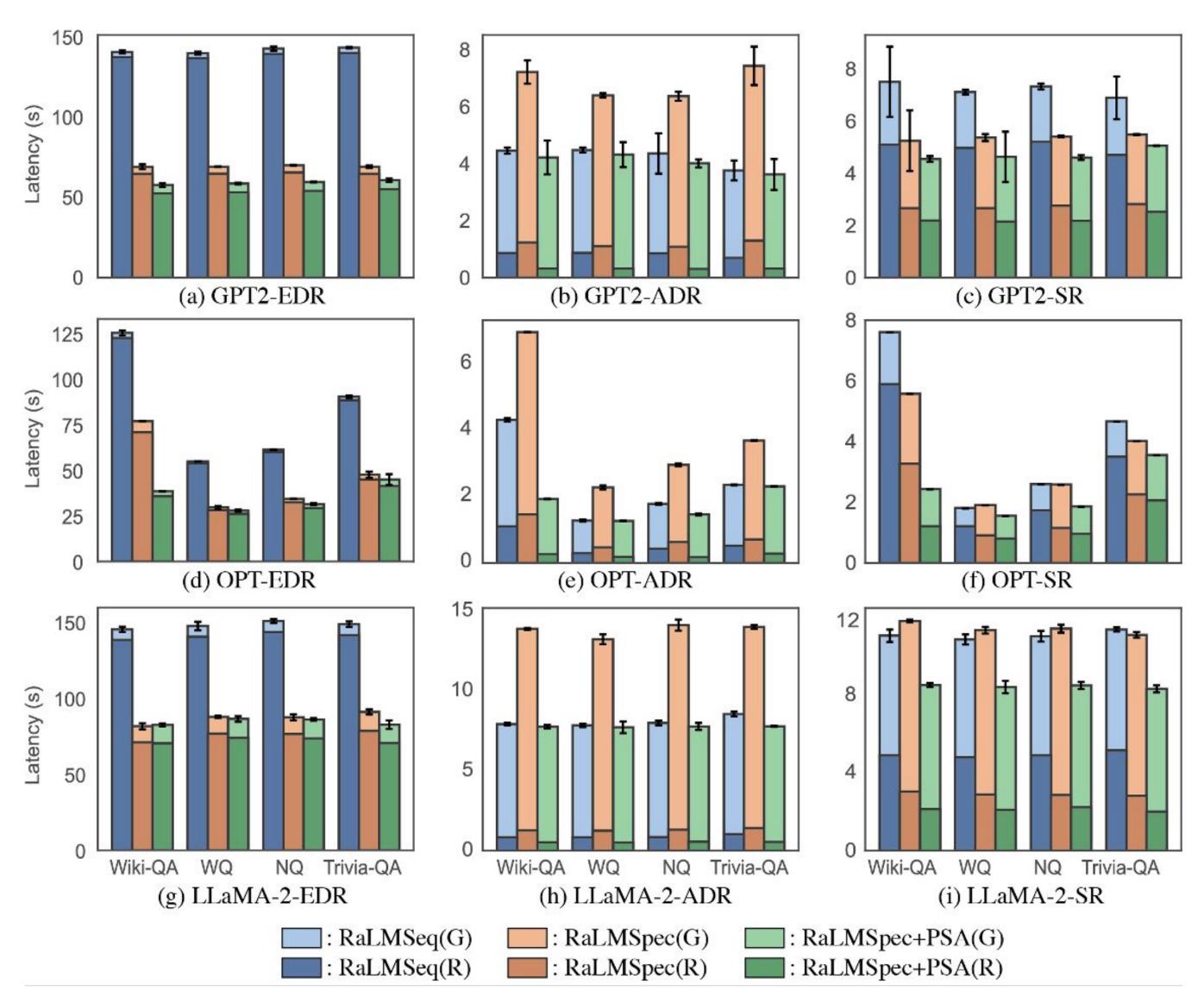
- Leveraging the **temporal locality** (i.e., the same document can be retrieved multiple times of a generative task), RaLMSpec combines cache-based speculative retrieval with batched verification to preserve the generation quality.
- Incorporating prefetching (P), optimal speculation stride scheduler (S), and asynchronous verification (A) exploited the performance of RaLMSpec to the fullest.



# **RaLMSpec:** Accelerating Retrieval-augmented Language Model Serving with Speculation Lijie Yang (School of Computer Science) Mentor: Prof. Zhihao Jia, Zhihao Zhang

#### Results

• Latency summary of RaLMSeq (Baseline), RaLMSpec, and RaLMSpec+PSA on GPT2medium, OPT-1.3B, and LLaMA-2-7B over four QA datasets with exact dense (EDR), approximate dense (ADR), and sparse (SR) retrievers; G-generation, R-retrieval latency.



• Ablation results of speed-up (\*) and (\*\*) denote the most and the second most speed-up ratio

| 5 <u>84</u> |              |                    |                    |                    |
|-------------|--------------|--------------------|--------------------|--------------------|
| Retriever   | Method       | GPT2               | OPT                | LLaMA-2            |
| EDR         | RaLMSpec     | 2.04 	imes         | $1.76 \times$      | $1.70 \times$      |
|             | RaLMSpec+P   | 2.10 	imes         | $2.16 \times (**)$ | $1.75 \times (**)$ |
|             | RaLMSpec+S   | $2.26 \times (**)$ | 2.15 	imes         | $1.69 \times$      |
|             | RaLMSpec+A   | 2.03 	imes         | $1.74 \times$      | $1.74 \times$      |
|             | RaLMSpec+PSA | $2.39 \times (*)$  | $2.32 \times (*)$  | $1.75 \times (*)$  |
| ADR         | RaLMSpec     | 0.62 	imes         | 0.61 	imes         | 0.58 	imes         |
|             | RaLMSpec+P   | 0.59 	imes         | 0.76 	imes         | 0.58 	imes         |
|             | RaLMSpec+S   | $0.92 \times (**)$ | $1.17 \times (**)$ | $1.01 \times (**)$ |
|             | RaLMSpec+A   | $0.66 \times$      | $0.46 \times$      | $0.55 \times$      |
|             | RaLMSpec+PSA | $1.05 \times (*)$  | $1.39 \times (*)$  | $1.04 \times (*)$  |
| SR          | RaLMSpec     | 1.34 	imes         | $1.18 \times$      | 0.97 	imes         |
|             | RaLMSpec+P   | 1.39 	imes         | $1.42 \times$      | $0.98 \times$      |
|             | RaLMSpec+S   | 1.32 	imes         | $1.52 \times (**)$ | $1.05 \times (**)$ |
|             | RaLMSpec+A   | $1.41 \times (**)$ | $1.27 \times$      | $1.01 \times$      |
|             | RaLMSpec+PSA | $1.53 \times (*)$  | $1.77 \times (*)$  | $1.31 \times (*)$  |

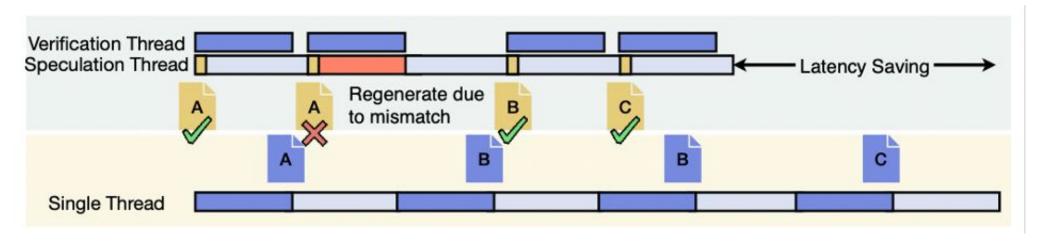
#### Discussion

The following are key features behind the speedup of RaLMSpec as a speculation-inspired framework that accelerates the serving of generic retrieval augmented generation.

• Stride: the number of speculation steps performed before a verification step,

$$\hat{\gamma}(X) = \frac{\sum_{t} M(s(t))}{\sum_{t} M(s(t), X) + \sum_{t} \mathbb{1}}$$

• Asynchronous verification: launch a new speculation step asynchronously while the verification of the previous step occurs.



### Takeaway

- RaLMSpec effectively reduces the retrieval overhead of iterative RaLM with batch verification and cache-based speculation while maintaining the same generation quality.
- Extensive evaluations demonstrate that RaLMSpec can achieve a speed-up ratio of 1.75-2.39X (EDR), 1.04-1.39X (ADR), and 1.31-1.77X (SR)

# **Future Work**

- Run additional experiments on larger main-stream models (such as LLaMA-2-70B)
- Investigate the workload in approximate dense retriever and sparse retriever



Contact lijiey@andrew.cmu.edu

(t), X)(M(s(t), X) < s(t))