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Introduction

e Fine-Tuning refers to the process of taking a
pre-trained model and training it further on
some dataset

® Fine-Tuning has impacts on performance of
model In-Distribution (I.D.) and Ou-of-
Distribution (O0.0.D.)

® In-Distribution — distribution of training data

e Out of Distribution — distribution of
non-training data
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Methodology

e Goal: Develop a theoretical understanding of
phenomena such as catastrophic forgetting and
data replay during fine-tuning

e Created a synthetic setup to study effects of
fine-tuning on simple neural networks
o Tested impact of scale on forgetting
o Implemented data replay

® Pre-trained over 2 gaussians as a regression
problem; fine-tuned by shifting label over X1
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e Width Increasing — More Forgetting
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e Data Replay at 5-10% significantly reduces forgetting
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Decrease in X2 prediction
represents forgetting

X2 Prediction stays near 1; almost no decrease

5-10% of data during fine-tuning is drawn
from pre-training distribution

e Found empirical examples of catastrophic forgetting in Llama-2-7B
o Fine-tuned on Alpaca dataset (instruction training)
o Evaluated on MNLI (Multi-Genre Natural Language Inference Corpus)
o Accuracy decreased from 42% to 33%, demonstrating forgetting

Key Takeaways

® Scale solving forgetting via capacity is likely an
incorrect conclusion

e |t's more likely that optimization differences
explains why scale solves forgetting

e Data replay boosts 0.0.D. performance even at
a low percentage of fine-tuning data

Analysis of I.D. and O.0.D. performance via NTK
e Neural Tangent Kernel (NTK)
o Measures sensitivity of function value at x to
prediction errors at x’

kg(x,x') — dfgéx) fffé'c(i/; )

e NTK can model how predictions change as the
model performs updates over training data
e |dea: Write a function that determines how
model’s predictions change I.D. and O.0.D. as
function of time
e NTK for explaining data replay
o Calculate changes I.D. and O.0.D. over
fine-tuning and data replay distribution
o Determine optimal replay rate and replay
curriculum

e Formalize the NTK’s explanation for data replay

® |nvestigate more complicated synthetic setups
for determining if scale solves forgetting

e Find more instances of catastrophic forgetting in
LLMs

® Test out scale hypothesis among LLMs
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