a

Semantics For Concurrent Separation Logic Using Relaxed Memory Models

Aaron Gostein, Stephen Brookes

N

Introduction

/ Weak Memory \

whereas under PSO, executable pomsets from this state

Concurrent Programming is a highly important topic in
Computer Science as it allows for the possibility of si-
multaneously running multiple tasks, which has a wide
variety of applications.

In logic for programming languages, we write state-
ments of the form {P}c{@} to mean that if the pro-
gram c is run from a state with property /. then if ¢
terminates the final state will have property Q).

Concurrent Programming Is Tricky

Consider the statement
lr=0lr=z+l|l2=2+1{2=2}
where || denotes parallel composition.

Is this statement valid?
Consider the possible order of memory actions:

1. Read x =0 in left program

2. Read r =0 in right program
3. Write x:=0+1=1 in left program
4. Write x:=0+ 1 =1 in right program

With the above interleaving of the parallel threads, we
get unintended behavior.

In order to properly deal with such race conditions, Pro-
fessor Brookes from CMU along with Peter O’'Hearn de-
veloped Concurrent Separation Logic (CSL) in the early
2000s, which is a logic for concurrent programs that
use shared memory. In CSL, every provable program is
race-free. However, an inherent assumption in their
work is that the memory model used by the computer
architecture is sequentially consistent (SC), mean-
ing that there is a total order on the reads and writes
performed by all threads of the program. In this work,
we make progress towards a proof that the semantics
for CSL used earlier can be extended to show that CSL
is sound for all reasonable memory models.

In the original paper introducing CSL semantics, Brookes
used action traces (sequences of memory actions) to

model the executions of programs. Traces correspond

directly with total orders, which works for SC because in

SC, every pair of memory actions is ordered. However,

as SC is quite a rigid guarantee, modern computer ar-

chitectures provide more relaxed memory models for the

sake of performance improvement. Such relaxed mem-

ory models include:

e Total Store Order (TSO):
Each pair of writes is ordered

e Partial Store Order (PSO):
Each pair of writes to the same variable is or-
dered

We say that TSO can relax (change the order of) pairs
of memory actions of the form (Write(z), Read(y)),
where x and y are different variables. PSO relaxes these
pairs, and also (Write(z), Write(y)). TSO is guaran-
teed to order pairs of the form (Write(x), Write(z))
and (Write(x), Write(y)), whereas PSO is only guar-
anteed to order (Write(z), Write(x)).

The upshot is that execution traces no longer suffice to
reason about programs in these weaker memory models.
To solve this issue, we have been developing a seman-
tics using partially-ordered multisets (pomsets) of
memory actions instead of traces. For example, consider
the following message passing program:

(.’1-: =4 Y = I)H(Whlle Y = () dO Sk]p o 2= ;1;)

Under TSO, the pomsets of this program executable
from the state {z:0; y:0; z: 0} have the form:

12 (y=0)*

L

Y= ==

'

p=4>

l

>e—4°)

include the below, which leaves z = 0 in the final state
since the order of x:=42 and y:=1 is relaxed as they
are writes to different variables.

Ti=a2 =1 (y=0)"

el

Theoretical Results

We were able to show that CSL is still valid using these
weaker memory models in the case of finite pomsets
(which correspond to terminating programs). The tech-
niques used for this proof constitute an adaptation of
the Szpilrajn extension theorem, which states that
every partial order can be extended to a total order.
The core of this argument is to take pairs of memory
actions in a pomset that must be ordered according to
the memory model, and ordering them one by one until
there are none left. This works in the case of a finite
pomset because every time a new pairs is added to the
ordering, the number of pairs that still need to be added
decreases. However, with infinite pomsets, a more tech-
nical proof is required.

